skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wang, Xinxin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Accurate and timely large-scale paddy rice maps with remote sensing are essential for crop monitoring and management and are used for assessing its impacts on food security, water resource management, and transmission of zoonotic infectious diseases. Optical image-based paddy rice mapping studies employed the unique spectral feature during the flooding/transplanting period of paddy rice. However, the lack of high-quality observations during the flooding/transplanting stage caused by rain and clouds and spectral similarity between paddy rice and natural wetlands often introduce errors in paddy rice identification, especially in paddy rice and wetland coexistent areas. In this study, we used a knowledge-based algorithm and time series observation from optical images (Sentinel-2 and Landsat 7/8) and microwave images (Sentinel-1) to address these issues. The final 10-m paddy rice map had user’s accuracy, producer’s accuracy, F1-score, and overall accuracy of 0.91 ± 0.004, 0.74 ± 0.010, 0.82, and 0.98 ± 0.001 (± value is the standard error), respectively. Over half (62.0%) of the paddy rice pixels had a confidence level of 1 (detected by both optical images and microwave images), while 38.0% had a confidence level of 0.5 (detected by either optical images or microwave images). The estimated paddy rice area in northeast China for 2020 was 60.83 ± 0.86 × 103 km2. Provincial and municipal rice areas in our data set agreed well with other existing paddy rice data sets and the Agricultural Statistical Yearbooks. These findings indicate that knowledge-based paddy rice mapping algorithms and a combination of optical and microwave images hold great potential for timely and frequently accurate paddy rice mapping in large-scale complex landscapes. 
    more » « less
    Free, publicly-accessible full text available April 25, 2026
  2. Free, publicly-accessible full text available May 1, 2026
  3. Abstract Sustainable biofuel cropping systems aim to address climate change while meeting energy needs. Understanding how soil and plant‐associated microbes respond to these different cropping systems is key to promoting agriculture sustainability and evaluating changes in ecosystem functions. Here, we leverage a long‐term biofuel cropping system field experiment to dissect soil and root microbiome changes across a soil‐depth gradient in poplar, restored prairie and switchgrass to understand their effects on the microbial communities. High throughput amplicon sequencing of the fungal internal transcribed spacer (ITS) and prokaryotic 16S DNA regions showed a common trend of root and soil microbial community richness decreasing and evenness increasing with depth. Ecological niche (root vs. soil) had the strongest effect on community structure, followed by depth, then crop. Stochastic processes dominated the structuring of fungal communities in deeper soil layers while operational taxonomic units (OTUs) in surface soil layers were more likely to co‐occur and to be enriched by plant hosts. Prokaryotic communities were dispersal limited at deeper depths. Microbial networks showed a higher density, connectedness, average degree and module size in deeper soils. We observed a decrease in fungal‐fungal links and an increase of bacteria–bacteria links with increasing depth in all crops, particularly in the root microbiome. 
    more » « less
  4. Wild waterbirds, and especially wild waterfowl, are considered to be a reservoir for avian influenza viruses, with transmission likely occurring at the agricultural-wildlife interface. In the past few decades, avian influenza has repeatedly emerged in China along the East Asian-Australasian Flyway (EAAF), where extensive habitat conversion has occurred. Rapid environmental changes in the EAAF, especially distributional changes in rice paddy agriculture, have the potential to affect both the movements of wild migratory birds and the likelihood of spillover at the agricultural-wildlife interface. To begin to understand the potential implications such changes may have on waterfowl and disease transmission risk, we created dynamic Brownian Bridge Movement Models (dBBMM) based on waterfowl telemetry data. We used these dBBMM models to create hypothetical scenarios that would predict likely changes in waterfowl distribution relative to recent changes in rice distribution quantified through remote sensing. Our models examined a range of responses in which increased availability of rice paddies would drive increased use by waterfowl and decreased availability would result in decreased use, predicted from empirical data. Results from our scenarios suggested that in southeast China, relatively small decreases in rice agriculture could lead to dramatic loss of stopover habitat, and in northeast China, increases in rice paddies should provide new areas that can be used by waterfowl. Finally, we explored the implications of how such scenarios of changing waterfowl distribution may affect the potential for avian influenza transmission. Our results provide advance understanding of changing disease transmission threats by incorporating real-world data that predicts differences in habitat utilization by migratory birds over time. 
    more » « less